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1 Introduction

This file contains the mathematical background of the RiskOptimix model. Specifically, this paper
will discuss the use of different types of GARCH models in ensemble form, and two different
multivariate GARCH models: Constant Conditional Correlation (CCC) and Dynamic Conditional
Correlation (DCC).

All credits go to the curriculum of the course ’Financial Econometrics’ at the Vrije Univer-
siteit Amsterdam, which gave the foundation of my knowledge of financial econometrics and these
types of models. Furthermore, it must be noted that certain sections of this paper are taken from
my bachelor’s thesis "The effect of extreme volatility on the accuracy of GARCH models in VaR es-
timation" which is available upon request. This thesis was based upon a publication by Angelidis
et al. (2004). Lastly, it must be noted that this paper is the result of many evenings and weekends
spent exploring GARCH models out of academic curiosity. While I’ve tried to be rigorous and
follow the literature carefully, this remains an independent project that may contain errors or de-
batable methodological choices. Please read with appropriate skepticism, and feel free to reach
out if you spot anything that seems off.

Throughout this paper, additional details and examples will be given using a basic portfolio
given in Table 1, while it must be noted that this can be extended to a portfolio of any size and
value. The data are obtained from Yahoo! Finance (2025).

Stock
Ticker

Portfolio
Value ($)

AAPL 5000.00
MSFT 3000.00

Table 1: This table represents a simple stock portfolio that will be used as an example throughout
this paper. This portfolio contains $5000.00 of Apple Inc. (AAPL) and $3000.00 of Microsoft
Corp. (MSFT) and $4000.00.

2 Prices and returns

The movements of the stock prices of a particular stock are often modeled as a random walk
process. Formally, the time series of prices {pt}t∈Z is given by pt = pt−1 + εt, with εt following
from a white noise sequence with E(εt|pt−1) = 0. Because of this random walk process, the
price at time t would be the best forecast for the price at time t+ 1. Furthermore, since a random
walk process implies that the time series is unit-root non-stationary, it follows that the time series
itself is non-stationary. However, the variation in prices, commonly referred to as returns, is often
considered stationary. Returns often exhibit volatility clustering, characterized by periods where
large returns are followed by other large returns, and small returns are followed by small returns.
This volatility clustering is useful for understanding the risk associated with a particular stock or
portfolio. Predicting the volatility of future returns can be extremely useful for risk management
and risk minimization.

To use the returns for volatility prediction, this paper uses the continuously compounded re-
turns. This is denoted by yt = ln(pt/pt−1)× 100, where pt is the closing price of a stock at time
t.

The prices and returns of the stocks in our portfolio over the period from January 1, 2010 to
January 1, 2025 can be seen in Figures 1 and 2. These figures show interesting trends that motivate
our chosen methodology. First, we see a rise in stock prices for both stocks over the period, with
sharp drops around March 2020 and the beginning of 2022 due to the COVID-19 crisis. This
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drop goes in line with increased volatility in the stocks, which can be clearly observed in Figure
2. Here we see two important phenomena. The first is volatility clustering, where periods of low
volatility tend to be followed by low volatility, and high volatility by high volatility. The second
phenomenon is the leverage effect, where stock volatility tends to be higher following negative
returns than positive returns, as observed by Black (1976). How we address these phenomena will
be discussed in Section 3.

Figure 1: This figure contains the course of the stock prices of the stocks in the portfolio of Table
1 over the period from 2010-01-01 until 2025-01-01.

Figure 2: This figure contains the continuously compounded returns of the stocks in the portfolio
of Table 1 over the period from 2010-01-01 until 2025-01-01.
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3 GARCH models

3.1 ARCH models and extensions

As discussed in Section 2, one wishes to model the return process of the portfolio. For now, we
focus on modelling the process of the returns of an individual stock. We model the returns process
using an autoregressive structure as follows:

yt = µ+

k∑
i=1

ϕiyt−i + εt, (1)

consisting of the predictable k-th order autoregressive (AR) process and the unpredictable com-
ponent εt. In this AR process, µ represents the constant term that affects the unconditional mean
µ/(1−

∑k
i=1 ϕi) under the assumption of a stationary process. The terms ϕi, i = 1, . . . k denote

the coefficients of the k-order AR component of the model and capture the effect of past returns
on the current return. The term εt = ztσt is seen as an unpredictable component and is modeled as
an autoregressive conditional heteroscedastic (ARCH) process to capture volatility clustering and
make predictions about the varying conditional variance (R. F. Engle, 1982). Here, zt is assumed
to be an independently and identically distributed random variable. Furthermore, zt is assumed to
have zero mean and unit variance {zt}t∈Z ∼ IID(0, 1). The conditional variance of εt, denoted by
σ2
t , can be expressed in multiple forms, where R. F. Engle (1982) introduced an ARCH(q) model,

given by

σ2
t = ω +

q∑
i=1

αiε
2
t−i,

with parameters ω > 0 and α1 ≥ 0, . . . , αq ≥ 0 determining the behavior of the conditional
volatility. The restrictions set on these parameters ensure the positivity of σ2

t . In this structural
form, the volatility σ2

t depends on the lagged unpredictable component in (1).
A natural generalization of the ARCH process was proposed by Bollerslev (1986) to cap-

ture the effect of past conditional variances on the current conditional variances, denoted by the
GARCH(p, q) model:

σ2
t = ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j . (2)

Similar to the ARCH process, the restrictions ω > 0, α1 ≥ 0, . . . αq ≥ 0 and β0 ≥ 0, . . . βp ≥
0 are made to ensure the conditional variance is positive. Additionally to the ARCH model pro-
posed by R. F. Engle (1982), the GARCH process also depends on the lagged volatility itself.

Furthermore, Bollerslev (1986) noted that for the GARCH(p, q) model, the problem of the
ARCH model including a substantial number of lags is solved. This is because even the GARCH(1, 1)
process can be written by a ARCH(∞) process by unfolding (2):

σ2
t =

ω

(1− β1)
+ α1

∞∑
i=0

βi
1ε

2
t−1−i.

The GARCH model is often used to explain the structure of the conditional variance. This is
due to its ability to explain volatility clustering in the returns and its robustness against extreme
results. At the same time, the GARCH model is seen as a symmetric model, as the conditional
variance is impacted by the squared term ε2t−i. Therefore, positive and negative values have the
same impact on σ2

t . However, as was seen in Section 2, this relationship is often negative, where
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extreme volatility is more often the result of negative past returns than positive past returns. Be-
cause of this result, a model based on the GARCH(p, q) process may not correctly include this
asymmetric property of the returns, and other models could help make better forecasts.

To account for the asymmetry in the time series, asymmetric ARCH models were introduced,
where our models uses an exponential GARCH (EGARCH(p, q)) model and a threshold GARCH
(TARCH(p, q)) model as extensions to the GARCH(p, q) model to capture the natural structure of
the returns potentially better.

Along with other reasons, Nelson (1991) used the result of asymmetry of Black (1976) and
proposed the EGARCH(p, q) model, which is given by

ln(σ2
t ) = ω +

q∑
i=1

αi g(zt−i) +

p∑
j=1

βj ln(σ
2
t−j), (3)

with g(zt) = θzt + γ [|zt| − E|zt|] (Nelson, 1991). Plugging in the function g(zt) in (3) and using
the fact that zt = εt

σt
, the EGARCH(p, q) model proposed by Nelson (1991) is rewritten to

ln(σ2
t ) = ω +

q∑
i=1

(
αi

(∣∣∣∣ εt−i

σt−i

∣∣∣∣− E|zt−i|
)
+ γi

εt−i

σt−i

)
+

p∑
j=1

βj ln(σ
2
t−j).

In this model, γi allows the conditional variance to respond differently to positive and negative
returns, solving the GARCH model’s problem of symmetry. Another problem that the model
imposed by Nelson (1991) solves is the restrictions on the parameters in the GARCH model to
have a positive conditional variance, where since the term ln(σ2

t ) is considered instead of σ2
t , the

conditional variance is ensured to be non-negative. The part of E|zt| depends on the underlying
chosen distribution of zt and will be further discussed later.

Zakoian (1994) and Glosten et al. (1993) independently introduced the TARCH(p, q) model,
given by

σ2
t = ω +

q∑
i=1

αiε
2
t−i + γε2t−1dt−1 +

p∑
j=1

βjσ
2
t−j , (4)

where dt = 1 if εt < 0, and dt = 0 otherwise. Similar but different to the EGARCH model, the
TARCH model introduces the asymmetric effect by the additional structure γε2t−1dt−1, where the
volatility is differently impacted if dt = 1 or in other words if the returns are negative.

3.2 Distribution of the shocks

As was discussed in Subsection 3.1, the independent and identically distributed sequence of shocks
zt are assumed to follow some distribution. R. F. Engle (1982) assumed zt follows a standard
normal distribution and therefore has a density given by

f(zt) =
1√
2π

exp

(
−z2t

2

)
.

Because returns could be possibly better explained by a distribution with fatter tails than a
normal distribution, Bollerslev (1987) proposed that the sequence zt follows a standardized t-
distribution (Gosset, 1908). The degrees of freedom ν > 2 here describe the thickness of the tails,
where for increasing values of ν, the distribution tends to a normal distribution. This distribution
has a density given by

f(zt; ν) =
Γ((ν + 1)/2)

Γ(ν/2)
√
π(ν − 2)

(
1 +

z2t
ν − 2

)− ν+1
2

,
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where Γ(·) is the gamma function.
Nelson (1991) suggested the generalized error distribution (GED), which includes various

distributions that feature heavier and thinner tails and was first proposed by Subbotin (1923). The
tails of the GED are fatter than the tails of a normal distribution for 0 < ν < 2, where the GED
obtains thinner tails for ν > 2. The GED has a density given by

f(zt; ν) =
ν

21+
1
ν λΓ( 1ν )

exp
(
−1

2

∣∣∣zt
λ

∣∣∣) ,

where

λ =

(
Γ(1/ν)

22/νΓ(3/ν)

) 1
2

.

The model we use uses these three distributions discussed above to capture the structural effect
of the returns.

The individual GARCH models are all estimated using the arch Python package (Sheppard,
2025). For those interested, the procedure of estimating these models using the method of Max-
imum Likelihood, including the derivations of the log-likelihood functions for each underlying
distributional assumption, is discussed in my thesis "The effect of extreme volatility on the accu-
racy of GARCH models in VaR estimation" which is available upon request.

3.3 Ensemble GARCH approach for VaR estimation

As discussed in the previous sections, there are many options in choosing the appropriate GARCH
model to model an individual stock. One must choose the lag order combination (p, q), the spe-
cific GARCH extension and the underlying assumed distribution of the shocks. The sections above
discussed only a small subset of the possible choices, and it must be critically noted that many ex-
tensions and improvements have been made to dynamically model the stock returns.

Model specification and selection
Rather than selecting a single GARCH specification, we implement an ensemble approach

that combines multiple GARCH models to leverage the strengths of different specifications. This
is a commonly used approach in literature, where GARCH models are combined with each other
or even other types of models such as machine learning models (see for example Aras (2021),
Lahmiri and Boukadoum (2015) or Kakade et al. (2022)). Our ensemble considers 30 distinct
model configurations, varying across multiple dimensions: (1) the GARCH model type (standard
GARCH, EGARCH and TGARCH, discussed in Subsection 3.1), (2) the lag order combinations
(p, q) including (1,1), (1,2), (2,1) and (2,2) for GARCH and (1,1), (1,2), (2,1) for EGARCH and
TGARCH, and (3) the distributional assumption of the shocks zt (normal, Student-t and GED,
discussed in Subsection 3.2).

Rolling window VaR backtesting
To evaluate and weight these models, we use a rolling window backtesting procedure. Starting

with an initial training window of at least 500 observations, we fit each GARCH specification to
the training data and generate one-step-ahead Value-at-Risk (VaR) forecasts at the 5% confidence
level. The window is then rolled forward by a fixed rebalancing frequency and the process repeats
until the end of the sample period. This approach finds a balance between periodically refitting
the GARCH models but keeping realistic trading conditions where a certain model is used for a
longer period.

For each forecast, we calculate the VaR as:
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V aRt = (−µt + zα · σt),

where µt is the expected return, σt is the forecasted volatility from the GARCH model and zα is
the appropriate quantile of the assumed distribution.

Model evaluation criteria
Each model’s performance is evaluated using multiple criteria:

1. Christoffersen’s Conditional Coverage Test: This test, introduced by Christoffersen (1998),
examines both the unconditional coverage (whether the observed exceedance rate matches
the expected rate), a test for which was introduced by Kupiec (1995), and the independence
of the exceedances. Models that fail these tests (p-values below 0.05) indicate poor VaR
model specification.

2. Asymmetric Quantile Loss Function: We employ an asymmetric loss function that penal-
izes VaR exceedances more heavily than non-exceedances:

Lasym(rt,VaRt) =

{
α · (Lt − VaRt) if Lt > VaRt

(1− α) · (VaRt − Lt) otherwise,

where Lt = −rt is the realized loss and α is the confidence level (Koenker and Bassett Jr
(1978)).

3. Regulatory Loss Function: We also implement a regulatory-style loss function that in-
cludes a magnitude penalty for severe exceedances, taking tail risk management into ac-
count. Here we take the asymmetric quantile loss function to obtain a "base loss" and
amplify this loss by the magnitude penalty.

4. Coverage Accuracy: Lastly, we use the deviation between the empirical exceedance rate
and the target confidence level to give a direct measure of the model calibration.

Ensemble weight determination
The ensemble weights are determined through a multi-criteria optimization approach. For the

models passing the statistical tests (Christoffersen p-values > 0.05), we calculate weights based on
four components:

• Statistical validity (40% weight): Based on the geometric mean of the unconditional and
conditional coverage p-values.

• Regulatory loss performance (30% weight): Inverse of the average regulatory loss

• Coverage accuracy (20% weight): Inverse of absolute deviation from target exceedance
rate

• Asymmetric loss performance (10% weight): Inverse of average asymmetric loss

The final weight for model i is then given by:

wi =
si∑N
j=1 sj

,

where si is the weighted combination of the four component scores. It must be noted that these
weights are hand-picked based on expected relevance. Improvements on these choices can there-
fore certainly be made.
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If no models pass the statistical tests, we select the best five models based on a quality score
using the same multi-criteria approach. This ensures the ensemble remains robust even when the
market conditions cause poor individual performance.

Implementation and final forecasting
After determining the optimal weights through backtesting, we refit all selected models on the

full dataset. The ensemble VaR forecast is then computed as the weighted average of the individual
model forecasts.

4 Constant Conditional Correlation (CCC) model

The Constant Conditional Correlation (CCC) model, introduced by Bollerslev (1990), provides
an effective solution to modeling multivariate volatility. The fundamental assumption of the CCC
model is that while individual asset volatilities evolve dynamically over time, the correlation struc-
ture between assets remains constant. This simplification dramatically reduces the number of pa-
rameters to be estimated while still capturing important features of multivariate return dynamics.

For a portfolio of n assets, the CCC model decomposes the conditional covariance matrix Σt

as:

Σt = DtRDt,

where Dt = diag(σ1,t, . . . , σn,t) is a diagonal matrix containing the conditional standard devia-
tions of each asset, and R is the constant conditional correlation matrix. Each individual variance
σ2
i,t follows a univariate GARCH process, as is shown in Section 3.

The correlation matrix R has the structure:

R =


1 ρ12 · · · ρ1n
ρ12 1 · · · ρ2n

...
...

. . .
...

ρ1n ρ2n · · · 1


where ρij represents the constant conditional correlation between assets i and j. This ensures that
Corr(yit, yjt|Yt−1) = ρij for all t, while the conditional covariance Cov(yit, yjt|Yt−1) = σijt =
σitσjtρij varies through time via the dynamic volatilities.

4.1 Implementation using ensemble GARCH models

Our implementation uses the ensemble GARCH approach described in Subsection 3.3 to obtain
robust estimates of the individual conditional volatilities. The CCC estimation procedure follows
the following approach:

Stage 1: Univariate volatility modeling: For each asset i in the portfolio, we fit the ensemble
of 30 GARCH specifications and determine the optimal weights through the rolling window VaR
backtesting procedure (see Subsection 3.3 for details). The weighted ensemble provides:

• Conditional volatility series: σ̂it =
∑M

m=1wimσ̂
(m)
it

• Standardized residuals: ẑit = εit/σ̂it,

where wim is the weight for model m of asset i determined through the multi-criteria optimization.
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Stage 2: Correlation matrix estimation: The constant correlation matrix R is estimated
from the standardized residuals obtained from the ensemble models:

ρ̂ij =
1

T

T∑
t=1

ẑitẑjt.

Using this approach, the correlation estimation is based on properly filtered returns that ac-
count for the time-varying volatility dynamics captured by the ensemble models.

4.2 Forecasting and portfolio optimization

Given the fitted CCC model, the h-step ahead covariance matrix forecast is:

Σ̂t+h|t = D̂t+h|tRD̂t+h|t,

where D̂t+h|t contains the h-step ahead volatility forecasts from each ensemble models. Here, the
volatility forecasts for each individual asset is obtained with the ensemble approach by:

σ̂i,t+h|t =

M∑
m=1

wimσ̂
(m)
i,t+h|t.

This estimated CCC model is the foundation for the services that can be explored at RiskOpti-
mix. An example of this is the ’optimal portfolio weights’ service, where the forecasted covariance
matrix serves as input to the minimum variance portfolio optimization:

min
w

wT Σ̂t+h|tw subject to wT1 = 1, wi ≥ 0.

4.3 Model advantages and limitations

The CCC model has significant computational advantages. It requires only n(n−1)/2 correlation
parameters, next to the univariate GARCH parameters. However, the assumption of constant cor-
relations can be restrictive in practice. Financial markets often exhibit time-varying correlations,
particularly during crisis periods when correlations tend to increase (Wong, Vlaar, et al., 2003).
We therefore chose to move from the CCC model to the Dynamic Conditional Correlation (DCC)
model, which will be discussed in the next chapter.

4.4 Empirical results

To show the empirical application of the CCC model, we estimated simple GARCH(1, 1) models
for all assets in our portfolio. We then calculated the conditional variance of each asset and the
correlation between the assets. We used this to then compute the conditional covariance. All
results can be seen in Figure 3. Here, the spike in conditional variance can be seen for both
assets at the start of the COVID-19 crisis in 2020, and this logically translates to the conditional
covariance. As expected, the correlation between the two assets here is constant and lies at 0.5016.
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Figure 3: This figure contains the results of the estimated CCC model for the portfolio given in
Table 1. Here the conditional variance of each asset is plotted, as well as the conditional covariance
and the conditional correlation.

The "optimal" portfolio weights over time of our portfolio, based on the portfolio optimization
discussed in Subsection 4.2 can be seen in Figure 4. While it can be seen that the optimal weights
shift heavily over time, it can be seen that overall, the MSFT seems to be higher. This is also
confirmed by calculating the average weights: AAPL: 0.4146 and MSFT: 0.5854.

Figure 4: This figure contains the results of the portfolio optimization of the portfolio given in
Table 1 discussed in Subsection 4.2, computed using the estimated CCC model.
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5 Dynamic Conditional Correlation (DCC) Model

While the CCC model is computationally efficient, its assumption of constant correlations can be
overly restrictive. The Dynamic Conditional Correlation (DCC) model, introduced by R. Engle
(2002), addresses this limitation by allowing correlations to evolve dynamically while maintaining
the two-stage estimation approach.

The DCC model maintains the same covariance decomposition as the CCC:

Σt = DtRtDt,

where the crucial difference is that the correlation matrix Rt is now time-varying. The dynamics
are introduced through an auxiliary process for the quasi-correlation matrix Qt:

Qt = (1− α− β)Q̄+ αzt−1z
T
t−1 + βQt−1,

where Q̄ is the unconditional covariance matrix of the standardized residuals zt and α and β are
scalar parameters for the dynamics. The correlation matrix is then obtained by rescaling:

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2.

The parameters must satisfy α ≥ 0, β ≥ 0 and α+ β < 1 to ensure stationarity.

5.1 Estimation procedure

Our implementation follows the two-stage DCC estimation approach:
Stage 1: Univariate volatility estimation: This stage is identical to the CCC model. We use

the ensemble GARCH approach to obtain robust estimates of individual volatilities and obtain the
standardized residuals ẑit = εit/σ̂it for each asset.

Stage 2: DCC parameter estimation: Given the standardized residuals from Stage 1, we es-
timate the DCC parameters (α, β) by maximizing the correlation component of the log-likelihood:

Lc = −1

2

T∑
t=1

(
log |Rt|+ zTt R

−1
t zt − zTt zt

)
. (5)

This component is obtained as follows. We start with the log-likelihood of the returns rt:

L = −1

2

T∑
t=1

[
n log(2π) + log |Σt|+ rTt Σ

−1
t rt

]
.

Then noticing that Σt = DtRtDt this gives:

L = −1

2

T∑
t=1

[
n log(2π) + 2 log |Dt|+ log |Rt|+ rTt D

−1
t R−1

t D−1
t rt

]
= −1

2

T∑
t=1

[
n log(2π) + 2 log |Dt|+ log |Rt|+ zTt R

−1
t zt

]
.

This log-likelihood can be split into two parts: L = Lv +Lc, where the part that depends only
on Rt, the correlation component, is then given by Equation (5).
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The optimization is performed using Sequential Least Squares Programming (SLSQP) with
constraints ensuring α, β > 0 and α+β < 1. The unconditional correlation matrix Q̄ is estimated
as:

Q̄ =
1

T

T∑
t=1

ẑtẑ
T
t .

5.2 Dynamic correlation generation and forecasting

Once the parameters are estimated, we generate the complete time series of correlation matrices
by iterating through the DCC recursion. For forecasting, the h-step ahead correlation matrix is
computed as:

Qt+h|t = (1− βh)Q̄+ βhQt.

The forecasted covariance matrix combines the correlation forecast with volatility forecasts
from the ensemble models:

Σ̂t+h|t = D̂t+h|tR̂t+h|tD̂t+h|t.

5.3 Empirical results

Similarly as for the CCC model in Subsection 4.4 we estimated GARCH(1,1) models for both
assets and used this to estimate a DCC model. The results can be seen in Figure 5. The plots in
the top row should be equal to the plots in Figure 3, but a difference should be observed in the
plot of the conditional variance. That is, now not the constant conditional correlation is used, but
instead the dynamic conditional correlation. The evolution of this dynamic correlation can be seen
in the last plot, where it can, as expected, be seen that this evolves vividly over time. It is however
interesting, but also logical, to see that the average of this estimated conditional correlation lies at
almost the same value of 0.5015 of the constant correlation of the CCC model.
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Figure 5: This figure contains the results of the estimated DCC model for the portfolio given in
Table 1. Here the conditional variance of each asset is plotted, as well as the conditional covariance
and the conditional correlation.

Calculating the optimal portfolio weights of our portfolio, this time using the DCC model,
gives the results in Figure 6. These results look similar as the results in Figure 4 and the average
weights are also almost equal to those obtained by the CCC model: AAPL: 0.4121 and MSFT:
0.5879. This shows that the models interestingly perform quite similarly over time. This is, of
course, measured over a long period of time in close-up measures could reveal substantial results.
Furthermore, the performance and the difference in performance of the models heavily depend on
the specific setting of the experiment. It is however a nice way of showing the overall performance
of the CCC and DCC model.
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Figure 6: This figure contains the results of the portfolio optimization of the portfolio given in
Table 1 discussed in Subsection 4.2, computed using the estimated DCC model.

6 Conclusion

This paper showed the foundation of the model behind RiskOptimix and its mathematical back-
ground. We hope this gave further insights into why this approach is used and why it can be
useful.

The code that implements this dynamically for any given portfolio can be found on
www.RiskOptimix.com/econometric-models.
For further questions, notes, or any insights, feel free to reach out to riskoptimix@gmail.com.
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